Advanced

Network Security

Web Security & Mobile
Device Security

Dr. Yaeghoobi
PhD. Computer Science & Engineering, Networking, India
dr.yaeghoobi@gmail.com

00 [Web Security
01 [Web Threats and Attacks

02 [Countermeasures

03 [Mobile Device Security
04 [Mobile Access Control

05 [Mobile Device Information Leakage

Web OO

Security

Web Basics

Average user spends 32
h/month online

People spend much time interacting
with Web, Web applications (apps)

Their (lack of) security has
major impact

Interaction via Web
browser

L Jolad Q0 |y 6b) 89 poye
(L doliy) 9 Sla deliy g
213 1 odes U T (Cunl puc)

955950 @b 3l Jelss

The Web

Web page:
Consists of “objects”
Addressed by a URL

Most Web pages consist
of:

Base HTML page, and

Several referenced objects.

URL has two components:

host name and path name

User agent for Web:

Browser
MS Edge

Chrome

Netscape Communicator

Server for Web:

Web server

Apache (public domain)

MS Internet Information
Server

The Web: the HTTP Protocol

Server
running

NCSAWeb

SEerver

Mac running
Navigator

HTTP: HyperText Transfer Protocol

Web' s application layer protocol
Client/server model

Client: browser that requests, receives,
“displays” Web objects

b 9 s-l..g.«i\ cJ.JSL; L:;\.éEJJJ cwb})a 45(5‘)5)3).0
J,Q.)(; ll&ewll

Server: Web server sends objects in
response to requests

J.JSL; Jloyl ly sbdol by Cawlgsys o é“L?JJJﬁﬁ 9
HTTP 1.0: RFC 1945

HTTP 1.1: RFC 2068

The HTTP Protocol ...

aside
HTTP: TCP transport rotocols that maintain “state”
service are complex!
Client initiates TCP connection O Past history (state) must be
(creates socket) to server, port 80 maintained
Server accepts TCP connection O If server/client crashes, their
from client views of “state” may be
HTTP messages (application-layer Inconsistent, must be
protocol messages) exchanged reconciled
between browser (HTTP client) and 2 e aladl |, "state® 4 e S5
Web server (HTTP server) 96ty g
TCP connection closed 355 bhds 2y state 418X &y)
: FVATEPN PUNRPQERR T <
HTTP is “stateless” ST A S g S
Gl (Sean "Cumada " 2 590 o L
Server maintains no information A 03l GGudal Al ¢ 2L

about past client requests
MKL_SLQ W‘?JJ Q)l..g).b éb)&b‘)jjw
)yl (S Ao

HTTP Example

Suppose user enters URL http://www.someschool.edu/aDepartment/index.html

(contains text, references to 10 JPEG images)
la. HTTP client initiates TCP

connection to http server (process)
at www . someschool.edu. Po
80 1s default for HTTP server.

1b. HTTP server at host
www . someschool.edu waiting
for TCP connection at port 80.

“Accepts” connection, notifies
client

2. HTTP client sends http request
message (containing URL) into
TCP connection socket 3. HTTP server receives request

\ message, forms response
message containing requested
/ object

(aDepartment/index.html),
sends message into socket

time

http://www.someschool.edu/
http://www.someschool.edu/
http://www.someschool.edu/aDepartment/index.html

HTTP Example (Cont.)

4. HTTP server closes TCP
connection

S. HTTP client receives response
message containing
HTML file, displays
HTML. Parsing HTML
file, finds 10
referenced JPEG
objects

\4

time 6. Steps 1-5 repeated for
each of 10 JPEG objects

Non-Persistent and Persistent Connections

Non-persistent aslie &
HTTP/1.0

Server parses request,
responds, and closes TCP
connection

2 RTTs to fetch each object

Each object transfer
suffers from slow start

But most browsers use
parallel TCP connections.

Persistent »glia
Default for HTTP/1.1

On same TCP connection:
Sserver, parses request,
responds, parses new
request, ...

Client sends requests for
all referenced objects as

soon as 1t receives base
HTML.

Fewer RTTs and less slow
start.

HTTP Message Format: Request

Two types of HTTP messages: request, response

HTTP request message:

ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines L—

Carriage return,
line feed
indicates end
of message

HTTP Request Message: General Format

If

request
line

header
lines

Entity Body

HTTP Message Format: Response

status line

(protocol \

status code —
status phrase)

header
lines

data, e.g., /

requested
html file

HTTP Response Status Codes

In first line in server—client response message. A few sample codes:

200 OK

— request succeeded, requested object later in this message
w\yja doldl Lou ‘al...a.”: cdﬂj.n C,u»\j.‘i:).)
301 Moved Permanently

—requested object moved, new location specified later in this message
(Location:)

(2 O8%) ol ouis aseine ply ol)3 Gl O ol Cwlgsyd 5 O J&3
400 Bad Request
— request message not understood by server
Coand 533 B H9 o Jaigs ply sl g5y
404 Not Found
— requested document not found on this server
i 8L Hg (ol 93 0l Ll g3 i
505 HTTP Version Not Supported

Try HTTP (Client Side) for Yourself

telnet www.cse.ohio-state.edu/ 80

server port) at www.cse.ohio-state.edu.
Anything typed in sent to port 80 at
www.cse.ohio-state.edu

GET /~xuan/index.html HTTP/1.0

http://www.cse.ohio-state.edu/
http://www.cse.ohio-state.edu/
http://www.cse.ohio-state.edu/

HTTP Versions 2, 3

Max. webpage latency: 250-300 msec (lower is better!)
(lew! A 5 cmb) msec Y- --Y0 . 109 dxip 450 iSlus
HTTP 2, 3 designed for security, performance
Cowl ol (>l 3HE ¢ Coel 13 HTTP 2

HTTP 2:
Supports encryption as “first-class citizen”
"8 A) 25" st s IR Ja)y Sy

More info: 1. Gregorik, High Performance Browser Networking,
O’Reilly, 2017 https://hpbn.co/http2/ (Chapter 12)

HTTP 3:
Uses Google’s QUIC transport protocol (UDP) for lower latency
&S s oolaiwl A4S 436 sl QUIC transport protocol (UDP) SS90 |

More info: http://www.chromium.org/quic:

http://www.chromium.org/quic%3B

Th rc\e,;’:sband O 1

Attacks

Information Leakage

Sensitive information can be leaked via Web:

All files accessible under a Web directory can be downloaded

via GET requests

| stj.w.) JJLQ <9 wj@_éxjja > 0433).3 (-’LN GET C,u.u‘j.‘ﬁ:).) (_9.3‘).19)‘
Example 1:

- http://www.website.com/secret.jpg publicly accessible

- http://www.website.com/index.html has no link to secret.jpg
Attacker can still download secret.jpg via GET request!
IS GAHUGET calgsys b 51y secret.jpg Llgs 2 jg prlgs

Example 2: searching online for “proprietary confidential”
information

" oebaisl diley=e" Oiledbl (Sl ugy-’T S g

http://www.website.com/secret.jpg
http://www.website.com/index.html

Misleading Websites

Cybersquatters can register domain names similar to
(trademarked) company, individual names

s Slgali (S (S)lxd SHlo) b doline disls U WiSle3 2 Cyberquatters
LS e)

Example: http://www.google.com vs. http://gogle.com

VS. ...
Practice is illegal 7fdone “in bad faith” 28 ne

Arbitration procedures available for name
reassignment (ICANN)

(ICANN) pU suzme Gliaiil Sl 39290 Sy9lo Slgdg)

http://www.google.com/
http://gogle.com/

XSS and CSRF

Cross-site scripting (XSS): inject JavaScript from
external source 1nto insecure websites

A4S (3955 eIl Sl Coliw g 4 (2l e 1) oSl gl

Example: input <script
type=“text/javascript”> <!--evil code>
</script>

Cross-site request forgery (CSRF): force victim
browser to send request to external website —
performs task on browser’s behalf

- WS 2 Gl ol 09 4 CanlgBns Jlol 4 9eme b Bbsd e
A2 (2 el 5950 Byb 1)) Gl ddbss

Example: force load <img
src=“http://www.bigbank.com/transferFunds.p
hp?from=User&to=Attacker”/>

http://www.bigbank.com/transferFunds.p

SQL Injection

Common vulnerability (~71 attacks/hour) V\) mla gpds sl
(C;_CLw L) Ao

Exploits Web apps that:

Poorly validate user input for SQL string literal escape characters,
28 SQL 6l 2505 6l (BASU (35 iias
Example:

"SELECT * FROM users WHERE name = '" +

userName + ;

If userName issetto ' or '1'="1, the resulting SQL is
SELECT * FROM users WHERE name = '' OR '1'="1";

This evaluates to SELECT * FROM users = displays all users

Malicious Shellcode

Shellcode is non-self-contained binary executable code

Distinct from malware that executes on its own

Shellcode can only execute after injection into a running process’s
virtual address space

Most shellcode written in Intel IA-32 assembly language (x86)

Col Jolis 353 n& AL yly>! WSShellcode
S92 1y D93 (395 oy dS sl)31 3l alesie

Iy > o wolyd L_i") 31 U"’JQT sbxs yo & S o 1259 Shellcode
Cwl Lyl b8

(X86) sl b didogiintel 1A-32 5t g0 b Sl SuS s

Malicious Shellcode ...

When injected into JS code, shellcode executes

Hijacks browser process

Can totally control target process or system

Shellcode: attack vector for malicious code execution on target
systems (e.g., Conficker worm)

Usually, browser downloads JS code containing shellcode
JS code executes, controls target process/system
d9é (2 ly>Ishellcode i (2 G35 S IS @ oS oK
0352 551950 dily3
LS JAS ']y 515 390 @iwar b diolyd LilgS 2
‘ajfc Jls Olgie) Cua sl @i (§9) 1 Pyee AS ¢yl sl Shellcode
(Conficker
&S 2 650 hshellcode 9IS OS ;59,0 Ygano
LS (2 JAS) Bad ciwas [A3 ¢ LS (2 [yl IS oS

A Toy Shellcode

Shellcode for exit () system call

mov ebx, ©

Store @ into register ebx |::> mov eax, 1
Store 1 into register eax it Oxs0
. . . Shellcode
Execute instruction 1nt 0x80 < assembly
Assembled shellcode injected into bb 60 00 00 00 bs 01
JS code 00 00 00 cd 80

Binary
payload
injection

JS code | . . .3caabbbooooooOb80100000OCcd80ad46. . . more JS code

Countermeasures

HTTPS (HTTP Secure)

HTTPS uses cryptography with HTTP

Alice, Bob have public, private keys; public keys accessible via certificate

authority (CA)
Alice encrypts message with Bob’s public key, signs message with her private key

Bob decrypts message with his private key, verifies message using Alice’s

public key

Once they “know” each other, they can communicate via symmetric crypto keys
HTTPS provides greater assurance than HTTP
&S 2 03wl HTTP b (5)&550) SIHTTPS

BB (CA) Jszme 3osb)l (£908 BLLAE Lk (903403 9 (£908 SLAE SDIs Qb ¢ T
sl (g fannd

LS (2 basl |y ply 395 (90925 AL 9 6iS 2 $)1E30) by ply b (290e JSTL T

WS 2 ol) el el 2gae a5l oolital b (S (2 3LaSia) |y plo 393 (9o 3aa3 AL L

QS)13 byl lite 8330y S @2yl 51 ailgd (2 ¢ Al (2) ;000 oS Ko

LS (2 @2BHTTP 4 Cund (S by OLaalbIHTTPS

TLS/SSL

HTTPS uses Transport Layer Security (TLS),
Secure Sockets Layer (SSL), for secure data
transport

Data transmitted via client- server “tunnel”
Much harder to compromise than HTTP

ol cSgw 4N (Transport Layer Security (TLS) JIHTTPS
LS (2 o3l 015 pesl J&5 9 Jo> $1SSL))

DB g " J3g5" bR g e (oyb I ol Jawie S oold
HTTP)l 5 Coew Hlwn Syl

Problems: Jiluw gl s

Relies on CA infrastructure integrity

Users can make mistakes (blindly click “OK”)
Gl $CA by Sl 4
(J.uSL_igwsOK" " S92 Qbﬁf)ﬁS) AMSOM\ J.J.J\y % ub.gs

Web
Servers

HTTPS Example

User visits website via HTTPS, e.g., https://gmail.com

Browser sends TLS/SSL request, public key, message authentication

code (MAC) to gmail.com; gmail.com does likewise;

TLS/SSL encrypt entire connection; HTTP layered stop it

Both parties verify each other’s identity, generate symmetric key for

following communications:

Browser retrieves public key certificate from gmail.com signed by certificate

authority (Equifax)

Certificate attests to site’s identity
If certificate is self-signed, browser shows warning

Browser, gmail.com use symmetric key to encrypt/decrypt
subsequent communications

https://gmail.com/

JUSHTTPS

w9 slhttps://gmail.com ¢ Jls Olgic 4 cHTTPS Gipb 3l ;)E
LS (2 Wb colu

plu Cugd jly>l uS ¢ (sgae A (TLS / SSL Clgsys 155940
by e gmail.com &S 2 Jlwylgmail.com w HMAC))
(S (s Jos
WS adgie |y OT Hb AYHTTP &S 2 5)1d83my 1y JLasl SSTLS / SSL
3wl 4 bl Sl by Oxlite WS ¢ S (2 A0l) L0080 Cuga By 93 4o
S s
2940 gzpe lawgi ol Lael wiS (s ybsbgmail.com 1) 29es A (2155 55950
(Equifax) 4elualoS
WS (2 b) Colis Cog (p1sS
AB3 (2 OLE |y)i [8)950 ¢ gasds Coyguar (P19 Sliasl o)

ookl S byl 3LaSie) [6)1i85a) Sl Oyl A jlgmail.com)59y

Blacklist Filtering

Misleading websites: Register domain names similar trademarks, e.g.,

www.google.com, gogle.com, €tC.

9gogle.com cwww.google.com s cJlis Olgic 43 |y dials ol &y bogyye (5l e3e 1008 0leS (Sl Coles 19

XSS:

Validate user input; reject invalid input JeS 3y |y kel (63959 .S uwl |y 1)8 HLasl

Blacklist offending IP addresses calsio s (u)oT dS ol s
CSREF:

Use random “token” in web app forms 29 4ebyp b 0,5)5 dobas "dilad" 1 D) saldiul

If token is replayed, reject form (blacklist IP addresses)py? 3y «Ss5 sdme ise Wygue 2
SQL injection:

Validate user input to databases, reject invalid input 5399 «4wS dwl oals oL a1y 19,5 (8399
A8 3y [y piaels

Blacklist IP addresses slus sl (sles 0l

http://www.google.com/

Blacklist Filtering ...

Helpful browser extensions:

NoScript/NotScripts/... (stop XSS)
AdBlock (can stop malicious scripts in ads)
SSL Everywhere (force HTTPS)
Google Safe Browsing, etc.
ke 553950 (33939 Lo daliy
(XSS) wadgiNoScript / NotScriptts /...

(WS aBgio Dlads 5o 1) ytes S Sl Wilgs (2AdBlock
(HTTPS) 9.+SSL Everywhere

... 9 Google ¢y y9se

Defending Against Shellcode

Two main detection approaches: pasid ol (29 99

Content Analysis Igizes Judoxi g doys
Checks objects’ contents before using them
Decodes content into instruction sequences, checks if malicious
LS (2 w0 00Ul 31 g8 |y eleiel JUas
WS (g (0 ¢ bl QxS ST a8 (5 YLaSiey Jaalligis S 15 5o) Igione
Hijack Prevention 0293y)l & i
Focuses on preventing shellcode from being fully executed

Randomly inserts special bytes into objects’ contents, raises exception if
executed

Can be thwarted using several short “connected” shellcodes
A8 2 sSpisshellcode Jo6 Sl 5 $aSok 53 1) 355 3S5a3
..\JSL; .)Lq:g‘ b Ll \J.?-\ OHgue) ¢ .x.SL; .})\3 ;[‘4\.&\ 6‘53-7“’)3 b Ua\é- LQLQ CAJ[J é.)%)ﬁb.g

5905 $S9k> Olg5 2 shellcode "Juaie" oS ¢z 3l oolasuwl b

Content Analysis

Static Analysis Sl Jd=s g dijs

&S (2 03wl Wysen (S Joadlygiws (qwyp Sl US Sl calasl)l
Advantage: Fast gow

Disadvantages: Incomplete; can be thwarted by obfuscation
techniques dgai (&3 Olg5 (2 il Sl SiSS I ool b ¢ a8l

Dynamic Analysis Lg Jd=3 g 430

Detects a malicious instruction sequence by emulating its execution
A8 (2 pardd OF Bl Gl dads L) Oy Jeallygiws dlds S

Advantages: Resistant to obfuscation; more complete than static analysis
Sl AT 31 e Clalgl sl 53 palie

Disadvantage: Slower .S

Focus on dynamic analysis (greater completeness)

Dynamic Analysis

Approaches assume self-contained shellcodes

Analyses’ shellcode emulation:
Inefficiently uses JS code execution environment information
All memory reads/writes only go to emulated memory system
Detection uses GetPC code
LS (2 03lasiwl JS JeHBL uS (Slyml Jasee wileMb!
iyd (5 00 (5l s AlaBlo apes 3 |y bl (gl 9ul55 plas
&S 2 ool jawsid $lp GetPC S)

Current dynamic analysis approaches can be fooled:

Shellcode using JS code execution environment info
Shellcode using target process virtual memory info

Shellcode not using GetPC code

To detect all malicious shellcodes, we need a better approach

JSGuard (1)

Use dynamic analysis to detect malicious JS objects

Create a virtual execution environment for detection

Leveraging: (1) target processes’ virtual memory information; (2) target

systems’ context information in detection
NOT a whole-system emulator

Facilitate multiple-level redundancy reduction

Stack frames: check origins of JS code being interpreted

Native methods: check if native methods to be called originate from JS

interpreter or external components

Objects’ properties

Assume: JS interpreter’s (native) methods have no memory errors

JSGuard (2)

It’s hard to fool JSGaurd method:

Shellcode can use JS code execution environment information to
fool other dynamic analysis approaches

JSGaurd design leverages system’s context information

Shellcode can use target process’s virtual memory information
to fool other dynamic analysis approaches

JSGaurd design uses target processes’ virtual memory information

Shellcode can avoid GetPC code to fool other dynamic analysis
approaches
JSGaurd method does not rely on GetPC code for detection. It

leverage real virtual memory content to decode instructions and
emulate their execution

JSGuard (3)

Architecture runs in client-side application’s address space

Client-Side Application Address Space

JS Interpreter

- = - =

1
I
: (7 N
: JSGuard Core
I |
I o i |
List of ! Live JSString Malicious JSString i o e
Trustable Sites | 1 Objects & Detector i y
I |
: \ 5)
. /

—— e e e e e e e e e e e e e e e e

Summary

Web based on plaintext HTTP protocol (stateless)

Web security threats include information leakage,
misleading websites, and malicious code

Countermeasures include HTTPS, blacklist filtering
mechanisms, and malicious code detection
(w6 O9) ool WHTTP SS9 5 (e 9
0iS 0l yeS (S Culi g ¢ ledbl cuid Jolis g awiel Cldgs
Coawl Oysea US g
9 obew Cewd ALS MKA ¢HTTPS Joli bliie lelusl

weile 03

Security

Overview of Mobile Devices

Mobile computers:

Mainly smartphones, tablets

Sensors: GPS, camera,
accelerometer, etc.

Computation: powerful CPUs (> 1
GHz, multi-core)

Communication: cellular/4G, Wi-Fi,
near field communication (NFC), etc.

Many connect to cellular
networks: billing system

Sales in million units

Number of smartphones sold to end users
worldwide from 2007 to 2020 (statista 2020)

1 536.54 555_2?]’ 5_'?_33! 560_8B5

1 495 96
14239

1 244 74

296.65

17238
122 32 13929

2007 2008 2009 20710 2011 2012 2013 2014 2015 2016 2017 20018 2019* 2020

Mobile Threats and Attacks

Mobile devices make attractive targets:

People store much personal info on them: email, calendars,
contacts, pictures, etc.

Sensitive organizational info too...
Can fit in pockets, easily lost/stolen

Built-in billing system: SMS/MMS (mobile operator), in-app
purchases (credit card), etc.

Many new devices have near field communications (NFC), used
for contactless payments, etc.

Your device becomes your credit card

Location privacy issues

NFC-based billing system vulnerabilities

Bbgs Ol g Oladgs

1 aS 2 ool |y Olds Blual olyen yals sl o&ws

b e ¢ L @983 ¢ Jaoal 1S (2 033 LT 9 |y 5oL (gaseds cledlbol 5,3
o 9 polal ¢

oo 0 ol Blojl oledo

S S8 (5] s Sl NG (2

Aoliyy 093 duy3 ¢(olyar 25 593lRl) SMS / MMS @51y Clusyge @iugw
o 9 (Sliel ©)b)

Sy 4S Wi (NFC) S5335 (e @l Sh1s dodr (b 0iss 1 (5l
Agd (2 oolaiwl ope 9 wlad Ogdo Sl CSloy

39 (2 i Lot gylais))y Lot 0BG

Candge (905403 @y> e

NFC » (e Gluod)guo el (Sdy o]

Mobile Device Loss/Theft

Many mobile devices lost, stolen each year
Lo (g D cdigh (2 @S Sl o 0lya 25 (S 08w 3 (Sl

113 mobile phones lost/stolen every minute in the U.S.
56% of us misplace our mobile phone or laptop each month

Lookout Security found $2.5 billion worth of phones in 2011 via its
Android app

Symantec placed 50 “lost” smartphones throughout
U.S. cities

96% were accessed by finders
80% of finders tried to access “sensitive” data on phone
B3¢ (gwiwd BB 9Bub lawgs 78

Device Malware

iOS malware: very little

Juniper Networks: Major increase in Android malware from 2010
to 2011

Android malware growth keeps increasing (SSS)
Main categories:

Trojans
Monitoring apps/spyware

Adware
Botnets

WEe’ll look at notable malware examples

Device Search and Seizure

People v. Diaz. if you’'re arrested, police can search your
mobile device without warrant

Wuwgygbwoww&ﬁwawﬁs&mcJ:sg.zbj.&z.woﬁ
xS

S|

Rationale: prevent perpetrators destroying evidence

Quite easy to break the law (overcriminalization)
Crime severity: murder, treason, etc. vs. unpaid citations

“Tens of thousands” of offenses on the books

Easy for law enforcement to extract data from mobile devices
(forensics)

sl Ol 3938 (Slyz! (Sl olpad ks S oBGwwd 1 b 0ol 7zl y3eiu!

Location Disclosure

MAC, Bluetooth Addresses, IMEI, IMSI etc. are globally
unigque

Infrastructure based mobile communication

Peer-to-Peer ad hoc mobile communication

RS Wiled Olgz zlaw)3 08 9IMSI AMEI ¢« &35k SlguyaT (MAC

EVSUIEE
L coluyp) (s Hlw wlbls)l

Liod b o)y HKad 9 olpad b))l

Mobile O 4
Access

Control

Countermeasures (Mobile Access Control)

Very easy for attacker to control a mobile device if
he/she has physical access
Especially if there’s no way to authenticate user
Then device can join botnet, send SMS spam, etc.
sl Ol @2lgo (Sl dlpa (3l 0&wd 5 JAS 3 ga0lamyl (Sond (g fud LS|
IS 3929 ;)6 bl b Sl (2l b SI poguas 4
ope 9 ¢ 1S Jluyl Soley el ¢« U3 gambotnet 4 Llgs 2 o&ued uokes

Need access controls for mobile devices

Authentication, Authorization, Accountability (3555wl ¢ j9z0 ¢ Coga jly>!
Authentication workflow: Hlis! Job U9y

Request accessgw iwd Cawlgsyd
Supplication (user provides identity, e.g., John Smith) cwlgs)s
Authentication (system determines user is John) Cogd jly>!

Authorization (system determines what John can/cannot do) ==

Authentication: Categories

Authentication generally :oslwl » (S gb b Cuga uuls
based on:

Something supplicant knows W1 (2 0AS Cawwlgsyd dS (S
Password/passphrase D9 4ol [jgue o)
Unlock pattern 03,5 3b 655“

Something supplicant has 313 008 95y & Spe
Magnetic key card .

Smart card)

Lodo g)
Token device _

OS5 0w
Something supplicant is
. ‘ > ’..S . ‘ o S .

Fingerprint — Al g
Retina scan il

ASids (Sl

Authentication: Passwords

Cheapest, easiest form of authentication

sl dol Sa ¢py3 ealw ¢ cpy5 Ol
Works well with most applications

LS (£)8 o3 b deliy Adun b

Also the weakest form of access control (swiws JAS S p 5 Carnsd

Lazy users’ passwords: 1234, password, letmein, etc.

Can be defeated using dictionary, brute force attacks

Requires administrative controls to be effective

Col 0393 1550 Sy JAS p3kicuse

Minimum length/complexity
Password aging

Limit failed attempts

Authentication: Smart Cards/ Security
Tokens

More expensive, harder to implement 5 coww o3 01,8 Gly=!

Vulnerability: prone to /oss or theft e« 5 o daius 1Sy cawl

Very strong when combined with another form of
authentication, e.g., a password

(599 Db cditls olyod Hgue 30y S0 el Olgie 4 ylaiel w51 6505 S b oS oK

Does not work well in all applications .S w8045 b aby ann 5o

Try carrying a smart card in addition to a mobile device!

1S Jo 51 Lo gd)8 (SO ¢ ol o (4als ofws y 09dle

Authentication: Biometrics

More expensive/harder to implement
e [5 0S8 s
Prone to error:

False negatives: not authenticate authorized user

False positives: authenticate unauthorized user

WSS dl |y Slome)8 1036 S (e
Jlamant 56wl 1038 Cude
Strong authentication when it works
Does not work well in all applications
Cawl ($93 dalad HE S|
LSaed B g3 yl81 a5 dasd (S9) 3

Authentication: Pattern Lock

Swipe path of length 4-9 on 3 x
3 grid

Easy to use, suitable for mobile
devices

olyo yali (S o&iws Sl awlin oLl o3lasu
Problems:

389,112 possible patterns; (456,976
possible patterns for 4-char case-
insensitive alphabetic password!)

Attacker can see pattern from finger
oils on screen

Authentication: Comparison

Security Weak
Ease of Use Easy
Implementation Easy

Works for phones Yes

Strong
Medium
Hard
No

Strong
Hard
Hard

Possible

Weak
Easy
Easy

Yes

DiffUser

Current smartphone access control focus: 1 user (admin)

Hard to achieve fine-grained
Mobile device management:

Control app installation/gaming
Parental controls

Lend phone to friend
DiffUser, differentiated user access control model

Different users use smartphone in different contexts
User classification: admin, normal, guest

Personal SMS v 4 X

Info Contacts v v X
WiFi v v Limit!
Resource GPS V4 V4 Limit!

Access

Bluetooth v v Limit!

App Install v Limit X

Apps
Sensitive Apps v Limit X

DiffUser ...

Implement DiffUser system on Android using Java

Override Android’s “Home” Activity for multi-user
authentication, profile configuration

vle]:]

B B il ® s:48pm

HO® H MG s4orm

. Contact and SMS

. Contact and GPS

@ svis anacps
(-

You have selected: 2131034127

Mobile

pevice ()5

Information
Leakage

Mobile Device Information Leakage

Types of mobile device information sources

Internal to device (e.g., GPS location, IMEI, etc.)

External sources (e.g., CNN, Chase Bank, etc.)

ol yotd yall o&iws culeMb| @U.o &\y\
(& 9IMEI <GPS O8& ¢ Jln Olgie d) o&ws A1
(o& 9Chase Bank ¢CNN Jbw Olgie @) ()5 ol

Mobile Device Information Leakage ...

Third-party mobile apps can leak info to external sources

Send out device ID (IMEI/EID), contacts, location, etc.

Apps ask permission to access such info; users can
ignore!

Apps can intercept info sent to a source, send to
different destination!
s Jil) mle 4) wledbl dilgs (2 EJB jasei olpen ali Gl doly
A0S Jlyl |y o8 9 08 ¢ aabolses (IMEL / EID)) 08iws duslidy
105,85 0uual Wlg3 2 Ol s 2 1y GleMbl (i 4 (g jiwd o)l Lo daliy

Calizen daiio d ¢ LS (5,8 |y aue SO 4 olds Jluyl iledlol uilgs (s W daliy
!.Alifdbu_)\

Information Flow Tracking (IFT)

IFT tracks each information flow among internal, external sources
Each flow is tagged, e.g., “untrusted”
Tag propagated as information flows among internal, external sources
Sound alarm if data sent to third party
S 2 3by B 9 s mle g |y wledol gLy aIFT
"slaxel BB" ¢ “slexel BB A" ¢ Jlie Olgie b el 0l (HIIS iz OLy> 4o
G 5 U1 lie Ole 4 Gledlbl Oy Olgie 4 Canzy:

Hlaé &{) &JB oS RN de)\ Oy)

Information Flow Tracking (IFT) ...

Challenges W >

Reasonable runtime, space overhead Lxé) ¢ =l Oy Jgdae Ole)
Many information sources 3leMbl polo)1 (319],8

“trusted”

External Data

Email
Online banks
Social networks

“untrusted”

Information leakage on mobile devices

TaintDroid

Message-level tracking

.i.

Ean et al., OSDI 2010 Application Code Application Code
Virtual 1 Virtual 1 .
IFT system on Android 2.1 Machine Machine
1 Mative System Libraries l - -
Network Interface Secondary Storage - -

System firmware (not app)

_Variable-level

tracking

_Method-level

tracking

. File-level

tracking

Modifies Android’s Dalvik VM, tracks info flows across methods, classes,

files

Tracks the following info:

Sensors: GPS, camera, accelerometer, microphone
Internal info: contacts, phone #, IMEI, IMSI, Google acct

External info: network, SMS
Notifies user of info leakage

D2Taint

D2Taint uses fixed length tag (32 bits)

Tag includes segments corresponding to classes

Each segment stores representations of information sources in its
class

Representation: info source’s class table index
Note: source table grows over time

Information source representation does not uniquely ID source

Tag Structure Class 1 Location Information Table

Index Information Source
0000

Tag Scheme ID Class 1 Class 2 Class 3

/,f A V——A—V—J\—g\ 0011 usbank.com

xx|[0011 | xxxx [xxxx | xxxx|[[xxxx | xxxx|||xx|xx|xx|

10000

D 16 bits > €8 bits—>> €6 bits>

10011 citi.com

D2Taint ...

D2Taint implemented on Android, Nexus One
smartphones

Evaluate D2Taint: 84 popular free apps from Google
Play

D2Taint has overhead similar to TaintDroid’s

Location Privacy Protection

Strong regulation Judi Ol 480
Corporate
Individual
Dynamic MAC and Bluetooth addresses Lg: s 03 TMAC Cigish 9
Collision
How often to change?
Proxy-based communications s«Sgy » s ©lbls)

Dummy device as proxy

Group communications

Summary

Mobile devices are increasingly popular

There are many threats and attacks against mobile
devices, e.g., loss/theft, sensitive information
leakage, and location privacy compromise

Mobile access control, information leakage protection,
and location privacy protection, etc.
A O gazae (Sl odilyd jobo b olpen 42l5 S o o

[0313 Cawd 3l ¢ Jlo Olgis 4 ¢ olyad a5 (Sl 0w dude ($3L) D> 9 uigs
> 399 O SR> @y> o)l 9 (wlas OleMbl Cldd e

ot 9 06w (929405

Thanks for your Attention.

	Advanced Network Security�Web Security & Mobile Device Security
	Web Threats and Attacks
	Web Security
	Web Basics
	The Web
	The Web: the HTTP Protocol
	The HTTP Protocol …
	HTTP Example
	HTTP Example (Cont.)
	Non-Persistent and Persistent Connections
	HTTP Message Format: Request
	HTTP Request Message: General Format
	HTTP Message Format: Response
	HTTP Response Status Codes
	Try HTTP (Client Side) for Yourself
	HTTP Versions 2, 3
	Web Threats and Attacks
	Information Leakage
	Misleading Websites
	XSS and CSRF
	SQL Injection
	Malicious Shellcode
	Malicious Shellcode …
	A Toy Shellcode
	Countermeasures
	HTTPS (HTTP Secure)
	TLS/SSL
	HTTPS Example
	مثال HTTPS
	Blacklist Filtering
	Blacklist Filtering …
	Defending Against Shellcode
	Content Analysis
	Dynamic Analysis
	JSGuard (1)
	JSGuard	(2)
	JSGuard (3)
	Summary
	Mobile Device Security
	Overview of Mobile Devices
	Number of smartphones sold to end users worldwide from 2007 to 2020 (Statista 2020)
	Mobile Threats and Attacks
	تهدیدات و حملات موبایل
	Mobile Device Loss/Theft
	Device Malware
	Device Search and Seizure
	Location Disclosure
	Mobile Access Control
	Countermeasures (Mobile Access Control)
	Authentication: Categories
	Authentication: Passwords
	Authentication: Smart Cards/ Security Tokens
	Authentication: Biometrics
	Authentication: Pattern Lock
	Authentication: Comparison
	DiffUser
	Slide Number 57
	DiffUser …
	Mobile Device Information Leakage
	Mobile Device Information Leakage
	Mobile Device Information Leakage …
	Information Flow Tracking (IFT)
	Information Flow Tracking (IFT) …
	TaintDroid
	D2Taint
	D2Taint …
	Location Privacy Protection
	Summary
	Thanks for your Attention.

